

Comparison of HIRDLS L1 and L2 Data for T, O₃ and H₂O with ECMWF Analyses and Derived Radiances

Brian Kerridge, Alison Waterfall, Jolyon Reburn

Remote-Sensing Group
Earth Observation and Atmospheric Science Division, SSTD
Rutherford Appleton Laboratory, UK

Content

Validation Activities at RAL

- Outline of Work
- Correlative Data
- Relevant Instrument Details
- Radiance Comparisons (L1)
- Product Comparisons (L2)
- Summary and Conclusion

Outline

- The work carried out at RAL covers two aspects:
 - Examination of HIRDLS corrected radiances, L1/HIRRAD, for channels designated for T, H₂O and O₃
 - Comparison with simulated radiances using ECMWF met analysis fields
 - Examination of HIRDLS L2 T and O₃
 - Comparison to ECMWF geophysical data and sonde data

Correlative Data

ECMWF Analyses

Temperature, H₂O and O₃ data

- Taken on a regular 1.125° x 1.125° grid in lat/lon, on model levels (60 levels up to 0.1 hPa)
- Data available at 4 times throughout the day (00.00, 06.00, 12.00 and 18.00 UTC)
- For comparisons, data interpolated spatially and in time to the locations of HIRDLS measurements

Correlative Data

Sonde Data

Temperature profile data

- UKMO high resolution radiosondes obtained from the BADC
- 9 stations worldwide (many around UK)
- Matching criteria: 300 km & 3 hrs

Instrument

Temperature

Ozone

Water Vapour

Channel	Species	50% Response (cm ⁻¹)		Sounding Range	Radiometric Noise
		Lower	Upper	(km)	$(10^{-4}\mathrm{Wm^{-2}sr^{-1}})$
1	N_2O, A	563.50 ± 2.0	587.25 ± 1.0	8-70	12.0
2	CO ₂ -L	600.50 ± 2.0	614.75 ± 1.0	8–40	6.3
3	CO ₂ -M	610.00 ± 3.0	639.50 ± 2.0	8–60	5.9
4	CO ₂ -M	626.00 ± 3.0	660.00 ± 3.0	15–60	6.0
5	CO ₂ -H	655.00 ± 3.0	680.00 ± 2.0	30–105	4.3
6	A	821.50 ± 2.3	835.00 ± 2.4	8–55	1.9
7	CFC11	835.00 ± 2.4	852.00 ± 2.4	8-50	2.0
8	HNO ₃	861.50 ± 2.5	903.50 ± 2.5	8–70	4.2
9	CFC12	916.00 ± 2.6	931.50 ± 2.6	8-50	2.0
10	O ₃ -M	991.00 ± 2.8	1009.00 ± 2.8	8–55	1.5
11	О3-Н	1011.00 ± 2.9	1046.50 ± 2.9	30–85	2.4
12	O ₃ -L	1120.00 ± 3.2	1138.50 ± 3.2	8–55	0.96
13	A	1202.00 ± 3.4	1259.75 ± 3.4	8–55	1.1
14	N_2O_5	1229.50 ± 2.0	1259.75 ± 1.0	8–60	1.1
15	N ₂ O	1256.25 ± 1.0	1281.75 ± 1.0	8-70	1.1
16	ClONO ₂	1278.25 ± 1.0	1298.75 ± 1.0	8-70	1.1
17	CH ₄	1325.50 ± 3.8	1367.50 ± 3.8	8–80	1.2
18	H ₂ O-L	1387.00 ± 4.0	1435.00 ± 4.0	8-40	1.2
19	A	1402.25 ± 1.0	1415.75 ± 1.0	8–55	1.3
20	H ₂ O-H	1422.00 ± 4.1	1542.00 ± 4.3	15–85	1.6
21	NO_2	1585.50 ± 4.5	1630.50 ± 4.6	8-70	1.1

Instrument

HIRDLS Channel Filters

Instrument

Field of View Map

Space

Earth

4.50 mm 55.0 km 18.2 mrad

L1 Comparisons

Calculations

- Radiances generated using the HIRDLS FM for May 2006 period
- Channels
 - 2 5 (temperature)
 - 10 12 (ozone)
 - 18 & 20 (water vapour)
- Calculations based on the HIRRAD data files
- Temperature, H₂O and O₃ taken from ECMWF, other contaminants from HIRDLS climatology files

Note: Cloud not included in the simulations and aerosol only as simple cilmatology so there will be tropospheric deviations of HIRDLS measurements for some channels

Temperature Channel 2

Temperature Channel 2

Ozone Channel 11

Ozone **Channel 11**

Water Vapour Channel 20

Water Vapour Channel 20

L2 Comparisons

ECMWF Data

 L2 data compared directly with ECMWF analysis data interpolated spatially and temporally to HIRDLS profile positions

HIRDLS Data

Data versions V2.00 & V2.02

Sonde Data

UKMO high resolution radiosondes

Temperature

Temperature - Global Average

Day Range : 20060504 - 20060531

(Shift: -1)

Temperature

HIRDLS Temperature at 28.7299 hPa

Temperature

Ozone

O3 - Global Average

Day Range : 20060504 - 20060531

(Shift: -2)

Conclusions

Summary & Conclusions

- Radiance Comparisons
 - Radiance profiles have been simulated using the HIRDLS FM and ECMWF data
 - HIRDLS radiances show atmospheric structure predicted from the ECMWF data
- Product Comparisons
 - HIRDLS L2 T and O₃ results have been compared to data from sondes and ECMWF
 - Temperature data shows good agreement with correlative profiles; ~1-2K bias in the stratosphere
 - O₃ profiles agree at the 1ppmv level; ~1ppmv bias at peak

